Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae).

نویسندگان

  • Eugenia Y Y Lo
  • Saša Stefanović
  • Timothy A Dickinson
چکیده

Polyploidy plays a prominent role in the speciation process in plants. Many species are known to be part of agamic complexes comprising sexual diploids and more or less exclusively asexual polyploids. However, polyploid formation has been studied in very few cases, primarily because of the challenges in examining these cases phylogenetically. In this study, we demonstrate the use of a variety of phylogenetic approaches to unravel origins and infer reticulation history in a diploid-polyploid complex of black-fruited Crataegus. The tree approaches are shown to be useful in testing alternative hypotheses and in revealing genealogies of nuclear genes, particularly in polyploid organisms that may contain multiple copies. Compared to trees, network approaches provide a better indication of reticulate relationships among recently diverged taxa. Taken together, our data point to both the autopolyploid and allopolyploid origins of triploids in natural populations of Crataegus suksdorfii, whereas tetraploids are formed via a triploid bridge, involving the backcross of allotriploid offspring with their diploid C. suksdorfii parent, followed by gene introgression from sympatric C. douglasii. Our findings provide empirical evidence for different pathways of polyploid formation that are all likely to occur within natural populations and the allopatric establishment of neopolyploids subsequent to their formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complex evolutionary dynamics of ancient and recent polyploidy in Leucaena (Leguminosae; Mimosoideae).

PREMISE OF THE STUDY The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. METHODS Parsimony- and ML-based phylogenetic approaches were applied t...

متن کامل

Population genetic structure of diploid sexual and polyploid apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest.

Polyploidy and gametophytic apomixis are two important and associated processes in plants. Many hawthorn species are polyploids and can reproduce both sexually and apomictically. However, the population genetic structure of these species is poorly understood. Crataegus douglasii is represented exclusively by self-compatible tetraploid pseudogamous apomicts across North America, whereas Crataegu...

متن کامل

Systematics and polyploid evolution in Potentilleae (Rosaceae)

Lundberg, M., 2011. Systematics and polyploid evolution in Potentilleae (Rosaceae). This thesis comprises studies of the phylogenetic relationships in the flowering plant clade Potentilleae in Rosaceae. The relationships were elucidated by using DNA sequence data from the nuclear genome as well as from the plastid genome. In particular, the focus of the studies was the investigation of allopoly...

متن کامل

Reconstructing patterns of reticulate evolution in plants.

Until recently, rigorously reconstructing the many hybrid speciation events in plants has not been practical because of the limited number of molecular markers available for plant phylogenetic reconstruction and the lack of good, biologically based methods for inferring reticulation (network) events. This situation should change rapidly with the development of multiple nuclear markers for phylo...

متن کامل

Inferring reticulate evolution networks from consensus gene trees

Motivation: A major unresolved problem in phylogeny is to reconstruct the evolutionary history of a set of species when it cannot be modeled by a simple tree. When a reticulation event, such as hybrid speciation or horizontal transfer, occurs, separate regions of a species’ genetic data may evolve along different trees. Our approach uses the gene trees for each region to solve the inverse probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 64 12  شماره 

صفحات  -

تاریخ انتشار 2010